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TOWARD A COMPUTATIONAL NEUROPSYCHOLOGY OF HIGH-LEVEL VISION

Stephen Michael Kosslyn

Visual processes in humans have recently been studied from three distinct

perspectives, with only the barest amount of cross-fertilization among them.

In this chapter we consider a way of melding the approaches of Artificial

Intelligence (AI), Cognitive Psychology and Neuropsychology, and explore the

advantages of such a hybrid approach. Each of the individual approaches has

its strengths and weaknesses, but these are different for the different

approaches; by combining the three, we are in a position to take advantage of

each one's strengths and may be able to circumvent each one's weaknesses.

Although I believe that most of the observations I will make in this chapter

generalize to the study of all cognitive abilities, I will restrict the

examples to vision. Vision has been the subject of intense study in the three

disciplines, and the evidence seems clear at least in this case that there is

much to be gained by combining the approaches.

The focus in this chapter is on just those events that take place near

the end of the visual processing sequence that originates at the eyes. These

events can be considered "mental* because they can be affected by one's

knowledge and beliefs (whereas processes carried out by low-level systems, such

as those localized at the retina, presumably are not affected by one's

knowledge and beliefs). The study of high-level, "mental" events presents

problems that are not as severe when one studies 'low-level" processing, which

is closely tied to properties of the stimuli. In low-level vision, an analysis

of the geometry of surfaces and the optics of light place strong constraints on

how information must be processed, as we shall see below. By the time we get
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to high-level processing, however, these properties of the stimuli have been

transformed numerous times in numerous ways. How can we best go about trying

to understand the last phases of the sequence of transformations? This task is

a little like constructing a ship at sea, with each piece floating freely.

Once we have nailed down a few of the pieces, the job will become easier; but

how do we identify those initial pieces? Let us briefly review the key

features and limitations of the approaches currently taken in Al, Cognitive

Psychology and Neuropsychology.

1. The Computational Approach L.

One way of trying to understand the nature of vision is to consider what

would be necessary to program a computer to see. In so doing, one is first led

to ask about the purposes of vision, and then is led to consider what problems

must be solved in order for it to serve these ends. At the most general level

of analysis, vision serves three functions: First, it allows one to identify

objects and events in the environment. Central to this capacity is the ability

to compare representations of input to stored representations of

previously-seen objects. Second, it allows one to navigate around in the

environment (without bumping into objects), and conversely, to avoid or

intersect other objects that are moving. Central to this capacity is the

ability to represent metric spatial relations and to update them e4ficiontly as

the organium or part of the environment moves. Third, it allows one to reason

about objects and events in their absence (e.g., to consider whether one's hand

could fit into a certain hole one remembers being of a specific size and

shape). Central to this capacity is the ability to "re-present" objects and

events to oneself in their 0mediate absence and to operato on those
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- representations in a way that will allow one to anticipate what would happen

should the analogous actual operations be performed in the real world.

In trying to understand even one of these capacities, researchers very

quickly discovered the usefulness of positing a modular design, with separate

mechanisms being used to carry out distinct aspects of performance. Thus,

researchers in Al developed theories of the processing modules used in

vision. A processing module is a "black box' that carries out specific

computation or computations. By "computation" I mean, roughly, "a meaningful

(i.e., informationally interpretable) transformation of an input.* The

theorist specifies the nature of the computations performed by various modules.

A theory of a computation specifies three things: the information

available to be used in performing a computation, the purpose of the

computation, and a description of what is being computed (see Marr, 1982). For

example, consider a theory of a computation used in low-level vision to detect

edges of objects. The information available is an intensity array, with

intensity values specified for each point on the image. The purpose of the

computation is to discover places where the intensity changes rapidly, which

are assumed to correspond to edges of represented surfaces. What this

computation does can be described as finding the zero-crossings in the second

derivative of the function relating intensity and position. (The actual theory

is more complicated, involving a convolution of the image with a function

representing the output from the very early processors; however, this brief

presentation is sufficient for present purposes. See chapter 3, Marr, 1992).

Researchers in Al do not stop with theories of processing modules and

their constituent computations. Rather, in order actually to build a working
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program one must also formulate a theory of how a computation is actually

accomplished on-line. Each "black box" can be opened up, so to speak, and its

internal workings described. Indeed, a theory of processing modules (and their

associated computations) is a way of organizing sets of representations and

processing operations into coherent units. That is, a processing module is

presumed to correspond to a mechanism that accomplishes the computations that

constitute the module. The on-line operation of this mechanism can be

described by a theory of the aloorithm for a given task. The algorithm

specifies step by step how a computation is carried out.

To get a feel for the distinction between a computation and the algorithm

that carries it out, think of the number of different ways one could perform a

computation like multiplication; one could add one of the numbers to itself

over and over, convert the numbers to logs and add the exponents, etc. The

actual procedure follows an algorithm, and numerous different algorithms can be

used to carry out the same computation.

In the course of developing theories of the algorithms used, a theory of

the functional architecture is developed. (Newell & Simon, 1972, are

primarily responsible for introducing the idea of a functional architecture to

psychology.) A theory of the functional architecture specifies the kinds of

representations (e.g., Roman numerals, numbers in log base 10, etc), buffers

(places where representations can be stored), and processing operations (such

as addition, matching, and substitution) that can be used in the algorithms

that actually carry out the computations (see Kosslyn, 1984, for a more

detailed discussion of the concept of a functional architecture). A given

component of the functional architecture (e.g., a buffer) in principle could be

1
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-. used by different algorithms that carry out different computations (e.g., the

same buffer can be used to store two numbers being added or multiplied), or it

could be used only by one algorithm, which carries out only a single

computation.

A "computational theory," then, is a theory that 1) specifies the

processing modules (and the constituent computations) used in performing a set

of tasks; 2) specifies the representations, buffers, and processing operations

used in carrying out the computations; and, 3) specifies the precise sequence

of steps used to perform a set of tasks. Incomplete computational theories are

today the rule rather than the exception, but all computational theories are

directed at eventually specifying these three aspects of information

processing.

Limitations of the approach

On Marr's view, the core of a theory of how information is processed is

the theory of the computation. The notion of a theory of the computation is

relatively novel for cognitive psychology, and it is worth exploring the force

of Marr's views. Marr (1982) argues that the information available and the

purpose of a computation often virtually dictate what the computation must be.

This sort of theory can sometimes be almost like a solution to a mathematics

problem, arising through logical analysis of the nature of the problem to be

solved and the input available to solve it. That is, if the task is very well

defined, and the input is highly restricted, a specific computation may almost

be logically necessary. Further, Marr claims that once a computation is

defined the task of characterizing the representations and processes used in

carrying out an algorithm is now highly constrained: the representation of the

WR__W
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input and the output must make explicit the information necessary for the

computation to serve its purpose (e.g., picking out likely locations of edges),

and the representations must be sensitive to the necessary distinctions, be

stable over irrelevant distinctions, and have a number of other properties (see

Marr, 1982, chapter 5).

To return to the example of the computation for detecting edges that was

discussed above, note that once we have described the purpose and the input, we

have almost defined what has to be computed. In addition, once the theory of

the zero-crossings computation was formulated, the theory of the representation -.

of the ouput of the computation was highly constrained: it needed to have

primitives that were likely to correspond to physically-meaningful properties

of the geometry of surfaces, and had to make explicit places where

zero-crossings exist. Marr's "primal sketch' uses short line segments, bars.

blobs and the like to connect zontiguous zero-crossings, producing a

* representation with properties that are desirable as input to later

computations that derive characteristics of surfaces and shape.

Marr's strong claims about the priority of the theory of the computation

do seem appropriate for some of the problems of low-level vision, but only

because there are such severe constraints on the input (posed by the nature of

the world and the geometry of surfaces) and because the purpose of a

computation is so well-defined (e.g., to detect places where intensity changes

rapidly, to derive depth from disparities in the images striking each eye, to

recover structure from information about changes on a surfaces as an object

moves). In cognition, the situation is somewhat different: First, the basic

abilities in need of explanation--analogous to our ability to see edges or to
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see depth in vision--must be discovered. For example, with the advent of new

methodologies, our picture of what can be accomplished in mental imagery has

changed drastically (e.g., see Shepard & Cooper, 1982). Second, the input to a

"mental" computation often is not obvious, not necessarily being constrained by

some easily-observed property of the stimulus. One must have a theory of what

is represented before one can even begin to specify the input to the

computations. Third, the optimal computation will depend in part on the kinds

of processing operations that are available; presumably, over the course of

evolution new computations developed in part by taking advantage of the

available processing resources. Thus, developing a theory of the functional

architecture--which specifies the types of representations and processing

operations available--would seem to go hand in hand with developing a theory of

a cognitive computation.

This conclusion is illustrated by problems with some of Marr's own work on

"higher level" vision. Marr posits that shapes must be stored using

"object-centered" descriptions, as opposed to "viewer-centered" descriptions.

In an object-centered description an object is described relative to itself,

not from a particular point of view. Thus terms such as "dorsal" and "ventral"

would be used in an object-centered description, as opposed to terms such as

"top" and "bottom" which would be used in a viewer-centered description. Mart

argues that because objects are seen from so many different points of view, it

* would be difficult to recognize an object by matching viewer-centered

*- descriptions of input to stored representations. However, this argument, based

on a theory of the purpose of the computation, rests on implicit assumptions

.. about the kinds of representations and processes available in the functional
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architecture. If there is an "orientation normalization" pre-processor, the

argument is obviated: in this case, a viewer-centered description could be

normalized (e.g., so the longest axis is always vertical) before matching to

stored representations. And in fact, we do "mentally rotate' objects to a

standard orientation when subtle judgments must be made (see Shepard & Cooper,

1982). Further, the mere fact that we do seem to normalize the represented

orientation, at least in some cases, casts doubt on the power or generality of

object-centered representations (if object-centered descriptions are made, it

simply is not clear why orientation normalization would be necessary). In

fact, when the matter was put to empirical test, Jolicoeur & Kosslyn (1983)

found that people can use both viewer-centered and object-centered coordinate

systems in storing information, and seem to encode a viewer-centered one even

when they also encode an object-centered one, but not vice versa.

Similarly, arguments can be levied against Marr's assumption that the

representations are genuine 3 dimensional representations, as opposed to "2

1/2-D" representations, where one only stores the visible depth information

(and not the occluded parts, as opposed to an actual 3-D representation, which

stores all parts--as would occur in a stick figure or pattern of points in a

3-D array). Further, one can even question whether shape representations used

in recognition are distinct from those used in navigation and visual reasoning

.as is involved in deciding whether a jar can fit on a particular space in the

refridgerator). If not, then the input to the recognition computation is apt

to be quite different from what was assumed by Marr.

* The point is that a logical analysis of requirements on the computation is

not enough: at least for high-level abilities, the specifics of a computation
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will depend to some extent on what types of representations and processing

* operations are available in the functional architecture. One can only discover

the actual state of affairs empirically, by actually studying the way the brain

works.

Although the computational approach is not sufficient in and of itself to

lead one to formulate a correct theory of information processing, it does have

a lot to contribute to the enterprise: Thinking about how one could build a

computer program to emulate a human ability is a very useful way of enumerating

alternative processing modules, functional architectures, and algorithms. Not

only does this approach raise alternatives that one many not have otherwise

considered, but it eliminates others by forcing one to work them out concretely

enough to reveal their flaws (the Guzman approach to vision is a good example; - -

see Winston, 1975').

II. The Cognitive Psychology Approach

The approach in cognitive psychology has been solidly empirical.

Researchers have developed methodologies that make use of response times, error

rates and various judgments, and have developed ways of using these

methodologies to draw inferences about underlying mechanisms. The

methodologies used have become very sophisticated and powerful, allowing

researchers to observe quite subtle regularities in processing. As we saw in

the previous section, such data place strong constraints on theories of

processing: since processing takes place in real time, there will always be

measurable consequences of any given sequence of activity--and if the wrong

pattern of responses occurs, a theory can be ruled out.

Although the psychologists occasionally focus on the nature of an
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algorithm a subject is using (particularly if the subject is an expert at the

activity, e.g. see Simon & Simon, 1978), they usually have been interested in

studying specific components of the functional architecture (e.g., a short-term

memory buffer; organization of a long-term memory network; types of production

rules). Properties of components of the functional architecture are revealed

when a person is engaged in a specific kind of information processing that

presumably requires use of those components. However, it has proven difficult

to draw firm conclusions about the underlying architecture or algorithms

because of two general problems: structure/process tradeoffs and task demand - -.

artifacts.

Structure/process tradeoffs

Anderson (1978) demonstrated that given any set of data, more than one

theory can always be formulated to account for the data. His proof rests on

the pervasive possibility of "structure/process tradeoffs." That is, what in

one theory are properties of a given representation operated on by a specific

process are in another theory properties of a different representation operated

on by a different process (and this process compensates for the difference in

representations, producing the same input/output characteristics when the

representation is operated upon). The Oanalogue/propositional" imagery debate

provides a good illustration of this point. For example, consider the results

of experiments on "mental rotation* (see Shepard & Cooper, 1983, for a review),

in which subjects require increasingly more time to compare two similar figures

that are presented at increasingly disparate orientations. The *analogue

theories" posit a representation that depicts the objects. That is, 1)

each part of the representation corresponds to part of a stimulus such that, 2.)
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, the distances among parts in the representation (where 'distance' is defined

functionally--as are distances among cells in an array in a computer) preserve

the actual distances among the corresponding parts. These representations are

like patterns of points in an array in a computer, and rotation is accomplished

by shifting the points incrementally--with more shifts being required to effect

a greater change in the represented orientation (see Kosslyn, 1980; 1981).

In contrast, "propositional theories* posit that objects are always

represented in terms of descriptions. In this case, each part is described as

being in a certain position relative to another part (e.g., attached to the

left and oriented 45 degees up), and wrotationn consists of altering the

relations incrementally (e.g., changing the number representing the angle from

45 to 90 degrees in 15 degree steps). Thus, greater *rotations' require more

time.

The two types of theories mimic each other, but in a rather uninteresting

way: they are created ad hoc simply to account for the data. What is required

are constraints on the theories, a source of motivation for selection of the

specific representations and processes. Why should information be represented

depictively or propositionally? Why is the transformation apparently done

incrementally? Computational considerations are one possible source of

constraint (e.g., a depictive representation makes explicit all metric spatial

relationships among an object's parts, which is very useful for performing

certain kinds of computations). However, we saw above that computational

constraints in and of themselves are not sufficient--and in fact the

observation of how the system functions (i.e., the dependency of response time

on angle) put constraints on computational theories themselves.
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Anderson (1978) drew some v.ery pessimistic conclusions from the possibflty

of speed/accuracy tradeoffs, but others such as Hayes-Roth (1979) and Pylyshyn

(1979) were less gloomy. The upshot of the debate seems to be that it is

possible to derive firm inferences about processing mechanisms from behavioral

data, but it is very difficult to do so. One argument to be developed in this

chapter is that neuropsychological data are powerful supplements to the usual

behavioral data, and greatly diminish the ease of using structure/process

tradeofs to concoct alternative theories.

Task demands

Another problem in interpreting behavioral data is the possibility of task

demands, which is especially severe in studies of visual thinking. That is,

subjects may respond (e.g., by taking longer to rotate an image of an object .

oriented at a greater angle) because they believe--perhaps unconsciously--that

this is what the task requires them to do. Part and parcel of understanding

the tafk may be to mimic the analogous real world event (cf. Pylyshyn, 1981).

*If so, then data from many studies of mental imagery may say nothing about the

nature of the underlying mechanisms, but only reflect the subjects'

understanding of tasks, knowledge of physics and perception, and ability to

regulate their response times.

Although the problem of task demands has been brought to our attention

primarily in the imagery literature (see Kosslyn, Pinker, Smith & Shwartz,

1979, and commentators on that paper), it is applicable to many domains in

cognitive psychology. There is no way to ensure that subjects are not

unconsciously prnducing data in ac-ordance with their "tacit knowledge" about

perception (and cognition) and their understanding of what the task requires
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them to do. In contrast, neurological maladies not only produce behavioral

deficits of various types, but often the patients are not aware of the nature

of these deficits (as will be discussed below for 'unilateral visual neglecto).

* ~ Thus, these types of data might profitably supplement the usual cognitive data

if for no reason other than to rule out task demand accounts of data (to the

extent that patients cannot be responding to task demands because they are - -

unaware of what they cannot do). And such data are useful for other purposes,

as discussed in the following section.

In short, the strong suit of the cognitive psychologists is their -

sophisticated methodologies and the well-described phenomena discovered in the

.-laboratory. However, although these phenomena can be used to rule out theories

that posit specific structures operated on by specific processes, they are -

difficult to use to pin down the properties of specific aspects of the

functional architecture; a theory must explain the data, and although many

cannot, there remain many that can. As will be discussed shortly,

neuropsychologica) data help to put two important kinds of constraints on

theories of how information is processed: constraints on the nature of the

processing modules, and constraints on the representations and p- essing

operations used in the modules. However, these data are useful only if

construed within a theoretical framework--which can be provided using a

computational approach--and if approached with sensitive methodologies--which

have been developed in cognitive psychology.

I1. Neuropsychological approaches

It is important to begin by distinguishing between two related, but

distinct, neuropsychological projects: On the one hand, one can focus on the
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", theory of functioning. That is, one could use neuropsychological data (e.g.,

behavioral dysfunction following brain damage) to help formulate and evaluate

the computational theory. On the other hand, one can focus on the brain per

so. In this case, one would try to characterize different brain loci (e.g.,

cerebral hemispheres) or patterns of activation in terms of the computations

they support. In this chapter the focus is on the theory of functioning,

although in developing such a theory we may discover interesting facts about

the role of specific brain structures. It is my belief that a good

computational theory will provide a good Oroad map" to guide investigations of ".

the operation of the organ itself, and may even be a necessary prerequisite to

understanding how the brain itself works.

The fact that cognition is something the brain does is so obvious it

seems barely worth stating. But because of this fact, if a theory of cognitive

processing is correct, then the various distinctions made in the theory must be

respected by the brain. For example, if a theory claims that shape and color

are extracted by separate mechanisms, then separate mechanisms must exist in

the brain (which need not be localized in distinct regions, however). The

nature of the brain introduces a number of constraints for theories of

cognition: The theory should be able to explain why certain abilities are lost

together whereas others can be lost separately. It should also be able to

explain why patterns of brain activity are more or less similar for different

sorts of tasks. Furthermore, theories must obey the broad constraints imposed

by the nature of the mechanism itsef; for example, if a theory posits that

items are searched at a rate exceedtng the firing time of neurons, the theory

must be incorrect. Thus, it makes sense to look at data that bear on the
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functioning of brain mechanisms when formulating and testing theories of

cognition.

Neuropsychological data are of two broad classes: First, and by far the

most predominant, are data on behavioral dysfunction following brain damage.

The damage can be endogenous (e.g., following a stroke or development of a

tumor) or exogenous (e.g., following head injury or surgery, as in split-brain

patients). Second, and of more recent vintage, are data on dynamic changes

within an intact brain performing specific cognitive tasks. These data are

obtained primarily by using EEG (electroencephalographs), ERP (event-related

potentials), PET (positron emission tomography), Xenon-133 regional cerebral

bloodflow, and NIIR (nuclear magnetic resonance) techniques. Each technique has

different advantages and drawbacks, and to a large extent they complement one

another.

John Hughlings Jackson is usually credited with making the first

substantive observations on visual deficits following brain damage. In 1874 he

described a way in which the cerebral hemispheres might be specialized,

proposing that the posterior part of the right hemisphere is the "chief seat of

the revival of images in the recognition of object, places, etc. (pg JOI)W.

This inference was based on the problems a patient with a lesion in this area

had in knowing where she was. In 1876 Jackson described what is now known as

visual agnosia' (also called "mindblindness')l this patient failed to

*recognize her nurses, got lost frequently when travelling familiar routes, and

often did not know objects, persons or places. This malady resulted from a

lesion in the posterior right hemisphere. Patients suffering from visual

agnosia are not blind: these patients can compare two shapes reliably when
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both are visible, but they cannot visually recognize what an object is

(although many can recognize objects by touch). This sort of agnosia has been

well-documented in the literature (see Benton, 1962). By 1910 a number of

visual/spatial deficits following brain damage had been identified, including

difficulties in reading, locating objects in space, and "neglect" (ignoring) of

objects that lie off to one side of the viewer. In addition, various theorists

(e.g., Rieger, 1909; Reichardt, 1918--discussed in Benton, 1982) hypothesized

that spatial/practical functions and verbal/conceptual functions are carried

out by distinct mechanisms, which might be localized to the cerebral -

hemispheres (with verbal/conceptual on the left, spatial/practical on the

right).

Recent reviews of the literature on visual deficits following brain damage -

(e.g., Benton, 1982; Ratcliff, 1982) reveal that we now know that various

* clinical signs are fairly common following damage in particular regions of the

brain (e.g., neglect of the left side often follows damage to the right

*parietal lobe), and we know that various deficits can be dissociated. For

example, patients can have difficulty in copying objects (by drawing or

constructing a model) but have no visual discrimination problems, or vice versa

-* (Costa & Vaughan, 1962). In addition, considerable effort has been made in

* trying to identify various functions with one hemisphere or the other (see

Springer & Deutsch, 1981).

Perhaps the most important conceptual development in the brain damage

literature is the formulation of the logic of the "double dissociation." If

|. some behavioral deficit reflects damage to a specific processing mechanism

* (e.g., for performing some sort of shape discrimination), and at least part of
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this mechanism is distinct from other processing mechanisms, then one should

find cases where the ability is spared while other abilities are disrupted

(e.g., perhaps discriminating orientation) and vice versa. (It is the *vice

versa' that produces the 'double' dissociation.) This sort of data provides

very strong evidence for a particular configuration of processors in the

system.

In addition to dissociations, one also finds associations. If a patient

cannot perform task X, in many cases he or she also will be unable to perform

task Y. This sort of result could indicate that the same aspect of the

functional architecture is recruited in performing both tasks, and that

component no longer functions effectively. However, one must be careful here:

it could be that different functions happen to be carried out by the same (or

- nearby) cortical tissue, and hence the association of deficits following brain

damage in a given region says nothing about shared functions in different

tasks. Thus, careful tests must be devised to ensure that processing is

disrupted in the same way in different tasks in order to provide evidence that

* the tasks share a processing component (0 will provide an example of this in

the next section).

Limitations of the aoiroach

There are two limitations evident in the neuropsychological literature

that are of particular interest here: First, the theories have not been very

sophisticated. For example, 'localizing oneself in space" is usually

considered a single ability in the neuropsychological literature, whereas a

computationally-oriented theorist would be inclined to decompose this ability

into various encoding, representation and retrieval operations. Similarly,
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visual agnosia is described ("m indblindnesso), but the underlying causes of the

deficit have not be explained; a computational approach would lead one to

attempt to characterize the nature of the representations (or properties

thereof) that may be lost or to characterize the nature of the failure of

processes that encode perceptual information, match it to stored input, and

make use of the stored information.

The computational approach has recently had an influence in

neuropsychology, and appears to be a promising avenue for future work. For

example, Moscovitch (1979) distinguishes between low-level "stimulus features, L

(presumably processed by both hemispheres) and higher order processes (which

may be localized in one cerebral hemisphere). This distinction helps to

explain why hemispheric specialization only appears for some phenomena. A more

detailed computational analysis might reveal that a given type of stimulus

feature (e.g., places where intensity changes most rapidly) might rely on a

computation that is localized in a given region, whereas others might rely on

computations localized in other regions. Thus, guided by such notions a closer

look might reveal subtlties that are not evident in the available data. An

analogous case is our study of image generation, discussed in the following

section, which illustrates how a computational analysis can illuminate

neuropsychological phenomena.

The second limitation evident in many neuropsychological studies with

humans (but not usually with animals; e.g., see Ungerleider & Mishkin, 1982) is

a lack of sophisticated methodologies. Much neuropsychological work centers on

administering standardized tests to various patient populations and looking for

differences in performance. These tests, however, do not necessarily tap

. .. . .. .. . .. . ... . .; . .. . .. ....." . .. . ... .. . . ... " . ... ... . . . . . I • I - l
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- distinct underlying processing mechanisms, and performance on them may be

"" related in a complicated way to underlying deficits.

In short, neuropsychological data provide another source of constraint on

theories of high-level visual processing. They have the potential of being

especially useful in identifying processing modules, given the logic of 'double

dissociation'. Let us now consider in more detail some of the potential

benefits o4 combining the three approaches.

IV. Combining the Approaches

IL The logic of dissociations and associations in deficits is a very powerful

way of developing and testing computational theories if it is yoked with the

methodologies and analytic techniques developed by the cognitive psychologists.

The methodologies developed by the cognitive psychologists for the most part

can be adapted for use in neuropsychological studies (much as many of them have

been adapted to study cognitive processes in children; e.g., see Siegler,

1978). However, this has not been done by the few researchers who have used

neuropsychological data to place constraints on explicit computational theories

of high-level vision. For example, Marr (who was perhaps the best

computational theorist, and thus worthy of such close examination) was very

impressed by the Warrington & Taylor (1973) findings on the failure of patients

with parietal-lobe damage to recognize mis-oriented objects (e.g., buckets

L viewed from the top). Marr concluded that this failure demonstrated that

objects were stored as descriptions, and that descriptions were structured

around assigning a major axis to an object and then minor axes (of attached

parts) of4 of it; when buckets were seen top down, one presumably had

difficulty locating the major axis. Unfortunately, the patient's problems may
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have had nothing to do with axis assignment: perhaps they were unable to

'mentally rotate' the buckets into a connonical orientation during the

recognition process. This possibility is, of course, directly testable by

applying the methodologies of contemporary cognitive psychology to brain

damaged populations.

To summarize, each of the three approaches discussed above has something

to offer, and each is complemented by the other two:

The computational approach is especially useful for generating hypotheses

about processing mechanisms: Thinking about the requirements of the task at

hand and how one would need to program a computer to perform it is a good way

of generating alternative possiblilities. In addition, this approach provides

a way of testing complex theories, by actually building a computer program that

emulates cognitive processing (see Newell & Simon, 1972). Precise theories of

on-line brain functioning may well be so complex that many of a theory's

implications will be derived only by using simulation models.

Neuropsychological data offer constraints both on theories of processing

modules and theories of the functional architecture. The finding of double

dissociations allows one to argue that abilities involve at least some

specialized processing modules. In addition, as will be illustrated shortly,

the finding of specific deficits that generalize across tasks of a given type

can be used to implicate specific representations and buffers. However,

neuropsychological data are open to multiple interpretations (just as are any

other data), and must be approached analytically.

The methods of cognitive psychology can be profitably used analytically to

investigate computational hypotheses about neuropsychological phenomena. These

-
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methods allow one to isolate the variables responsible for an effect, and often ,

specific variables can be identified as reflecting the operation of distinct

computations (e.g., using Sternberg's, 1966, additive factors methodology). In

addition, once there are prior reasons for positing a specific modular

composition of the system, the standard techniques of cognitive psychology

become more powerful: Once a module is defined, the number of "degrees of

freedom" is reduced for possible structure/process tradeoffs. That is, without

modularity constraints, any part of the system can be invoked in combination

with any other part to explain a specific result; but if a result can be shown

to rest on the operation of a specific module--which is distinct from other

modules--the explanation of the result becomes more constrained. Once

well-specified classes of alternative theories are defined, cognitive

psychologists are better able to specify which phenomena will distinguish among

competing accounts (e.g., see the mental rotation case discussed above as

treated in chapter 8 of Kosslyn, 1980). 1

Thus, the three approaches complement each other. The very rich

neuropsychological phenomena place strong constraints on computational

theories, especially when the tools of cognitive psychology are used to

precisely characterize the phenomena. In addition, the computational approach

provides useful guidelines about which phenomena are worth detailed scrutiny

(as illustrated above in the discussion of Marr's use of Warrington & Taylor's

findings). Furthermore, theory development will become much more

challenging--and potentially rewarding--if we combine the requirements from all

three disciplines: The theory must not only explain the neuropsychological

phenomena and the data from normal subjects, but ultimately must be capable of
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guiding one to build a computer model that actually emulates the behavior of -

normal and brain-damaged subjects. Unlike the case in cognitive psychology,

where it is easy to construct numerous alternative theories, we will be lucky

to formulate even a single theory that meets these criteria.

V. Some Examples of A Computational Neuropsychology

of High-Level Vision

It is probably most useful to provide some concrete examples of how this

combined "computational neuropsychological" approach can be used. Let us begin

by very briefly considering the key aspects of the Kosslyn & Shwartz

computational theory of visual mental imagery, and then consider one example o4

1) how available data in the neuropsychological literature bears on the theory;

2) how behavioral dysfunction following brain damage can be used to test and

help develop the theory; and 3) how PET scanning studies can be used to test

the theory.

The key claims of the Kosslyn & Shwartz theory can be divided into two

classes, pertaining to representations and processes. With regard to

representations, the theory claims that the experience of "having an image"

reflects the existence of a depictive representation in a visual short-term

memory buffer. Such a representation depicts in the same way that a pattern of

points in an array in a computer can depict an object (see Kosslyn, 1983).

This representation occurs in a buffer (which is a component of the functional

architecture) that functions as an array, with patterns within it comprising

the image itself. The image is a temporary representation, which is created on

the basis of information stored in long-term memory. We claim that visual

memories of objects are stored in long-term memory in terms of a) perceptual
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memories, organized into 'chunks' which correspond to parts of objects (e.g., a

dog's body, legs, etc might be stored in distinct units) and b) descriptions,

which indicate how the chunks are arranged.

With regard to the processing modules themselves, which make use of the

representations, let us consider here only those used in generating an image

(i.e., creating a short-term memory representation on the basis of information

stored in long-term memory). Previous research has suggested that image

generation is not a single computation. Rather, generation seems to involve a

processing module that actually activates stored perceptual information (called

PICTURE in our theory), another that 'looks" for locations where other parts

belong on partially completed images (called FIND in our theory), and yet a

third (called PUT in our theory) that uses descriptions (e.g., *a cushion is

flush on a chair's seat') to position additional parts into an imaged object

(see Kosslyn, 1981, for a brief overview). For example, in imaging a chair the

PICTURE processing module would activate the main form of the chair (called a

0skeletal image" in our theory), and in order to image the cushion on the seat

the FIND processing module would locate the seat, and the PUT processing module

would use the location information (plus its 'understanding" of the meaning of

the relation 'flush on') to provide input to the PICTURE module so that the

cushion would be imaged at the correct position relative to the seat. The PUT

processing module is putatively responsible for looking up the description of

the part and its relation, and uses this information to invoke the FIND and

PICTURE modules appropriately.

This theory is based on computational and empirical arguments: On the

computational side, the creative properties of image generation (e.g., as



Computational neuropsychology 24

involved in creating a scene from previously isolated elements, such as Ronald

Reagan shaking hands with George Washington)--which are useful in visual

reasoning--demand some process that coordinates separately stored encodings.

• And if images can be formed at different sizes and locations, then new parts

must be imaged relative to previously placed ones (not relative to some

absolute coordinates), which requires Ofinding" the parts of previously imaged

portions of an object before positioning new portions. On the empirical side,

it has been found that the ease of forming an image depends in part on the

"discriminabiltyo of the location at which it is to be put on an imaged object.

This result supports the idea that one inspects a partially completed image in

the act of integrating in new parts (see Farah & Kosslyn, 1981; Kosslyn,

Reiser, Farah & Fliegel, 1983). In addition, findings that people can use

descriptions to arrange items into an imaged scene forces one to posit some

computation(s) that use descriptions to position segments of an image (see

Kosslyn, 1980; Kosslyn et al, 1983).

It is possible, however, to argue that the data (which consist of

reaction-times collected from normal subjects) reflect task demands or the

like. And one could argue on computational grounds that the PUT and PICTURE

modules are not distinct, that activation of the stored information is simply

one aspect of the PUT module's operation. Hence it is desirable to have

stronger data supporting the proposed computational decomposition.

Data in the literature: an example

There is already information in the literature on brain damage that seems

*. to have direct bearing on the nature of the representations and processes used

* in imagery. These data indicate that specific deficits are general across a
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class of tasks, and seem to implicate problems in processing an array-like

image of the sort posited by our theory. In particular, Bisiach & Luzzatti

(1978) report that two patients with unilateral visual neglect (i.e., they

ignored visual input on the left side) also showed corresponding neglect in

their images of scenes encoded prior to the stroke. When asked to image a

piazza from a particular point of view and describe what they "saw,' they

mentioned only objects that should have been to their right side; when then

asked to image it from the opposite side, these patients reported *seeing,

objects that now were on their right--which were the very ones ignored

immediately before, when they were 'viewing' from the opposite perspective!

This phenomenon was also found when subjects imaged a familiar room from

different perspectives. In later work, Bisiach, Luzzatti & Perani (1979) used

a more objective task and found the same results: these sort of patients

neglect half of their mental images. It is of especial interest that the

patients lacked meta-knowledge about their malady. They were unaware that they -.

neglect the left side...which puts strain on an attempt to explain the data in

terms of *task demands" based on "tacit knowledge" (as was discussed in the

section on cognitive psychological approaches).

These data, then, are exactly what one would expect if our theory is

correct, and images are array-like spatial representations with parts on the

left side. Unfortunately, these patients also had slight *field cuts" on the

left side. Thus, we cannot infer from these results whether the "mind's eye"

(the tests used by the FIND processing module, in our theory) were selectively

ignoring half of the representation, or whether half of the functional array in

which images occur was disrupted. However, in principle the matter could be
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settled if patients could be located with neglect but no field cuts.

Evidence collected to test the theory: Brain damaoe

A recent review concluded that there is data suggesting that imagery is

* localized in the left, right, or both hemispheres; there was no unambiguous

evidence for its localization in the right hemisphere, as is assumed in the

common wisdom (see Ehrlichman & Barrett, 1983). And in fact, Farah (1983)

reviewed the neuropsychological literature and found evidence that different

imagery abilities may be localized differently; in particular, she argued that

image generation requires mechanisms that occur in the left hemisphere. But -A

even here the story is not so clearcut, with some results contradicting the

generalization. However, unlike earlier theories of imagery, ours posits that

the act of generating an image requires the operation of three processing

modules working in concert. And it need not be the case that all computations

involved in exercising a given abilility are localized in the same place (or

even nearby) in the brain. Our theory might, then, offer a way to sort out

what now is a muddy picture in the neuropsychological literature.

Kosslyn, Holtzman, Gazzaniga, & Farah (1984) have performed a large set of

experiments designed to examine the claim that the module that coordinates

multiple parts into a single image (the PUT processing module) is distinct fom

the PICTURE and FIND modules. We began by testing image generation of letters

of the alphabet in the two isolated hemispheres of a split-brain patient. In

our first series of experiments we asked the subject to make spatial judgments

about letters of the alphabet, deciding whether upoer case letters were

composed only of straight lines or included some curves. Robert Weber and his

colleagues have demonstrated convincingly that normal subjects require imagery
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in order to make these judgments from memory (see Kosslyn, 1980, for a review

of this work). We reasoned that most adults have seen so many letters that if

* asked to image one, they do not image a specific letter they once saw (e.g., on

page 43, line 5 of yesterday's New York Times). Rather, they use a stored

description of the letter to generate a *prototypical example'. For example, a

capital 0' might be stored as *two lines meeting at the top joined half way by

a horizontal line." The PUT processing module would use such a description to

assemble an image using stored images of linvs, and hence the

letter-classification task should be very difficult if the PUT module were not

operating effectively.

To test this idea, we flashed a lower case letter into the left or right

visual field, and asked our subject to decide whether or not the upper case

version had any curved lines (pressing one button if it did, another if it did

not). He showed a huge left hemisphere advantage. This was interesting in

part because his left hemisphere showed superior ability at language and

inference, both of which involve serial processing of symbols, and we posit

that the PUT module performs serial symbol manipulation. Various control

conditions were conducted to show that the right-hemisphere deficit was not due

*to its failing to understand the instructions, to know the association between

upper and lower case letters, to retain an image, to make the judgment, or to

combine together separate stages of a task. The deficit seemed to be in

* generating the image from stored information.

In order to implicate a deficit in the operation of the PUT module per se,

-we needed to show a dissociation between this task and other imagery tasks that

* putatively do not require this module. Thus, in other experiments we used
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stimuli that presumably need not be imaged from a description of parts in order

to perform the task. In one, names of animals were presented to one hemisphere

or the othe- If the named animal was larger than a goat, the subject was to

press one button; if a goat was larger, he was to press the other button. Now

both hemispheres performed essentially perfectly, and there was absolutely no

difference in response times. This task has been shown to require imagery

when the to-be-compared objects are close in size (e.g., goat vs. hog; see

chapter 9 of Kosslyn, 1980). In this case, however, only the global shapes

(the "skeletal images") are necessary, not the parts.

One could argue that the right hemisphere simply has problems in

generating images of letters because they are language-related materials.

Thus, it is of interest that in another task the right hemisphere failed

miserably when given the same names of animals used in the size comparison

task. Now, however, the question was, do the animal's ears protrude above the

top of its skull? If so, the subject pressed one button; if not, he pressed

another. In this task, an image of the ears must be correctly positioned

relative to the head, and it is this positioning-operation that apparently is

difficult in the right hemisphere of this patient.

Thus, the results served to implicate a distinct PUT processing module:

both hemispheres were comparable in their abilities to form and evaluate images

of global shapes, which requires the PICTURE and FIND modules, but the right

hemisphere showed a selective deficit in tasks that should require the PUT

module to perform.

The point is, then, that we can directly test our computational theory by

taking advantage of the idea that one or another computation may be localized



Computational neuropsychology 29

in a cerebral hemisphere in this patient. We recently have been repeating the

studies done with split brain patients, now using normal subjects and looking

for reaction time differences. It is interesting that we find small but

consistent reaction time differences in normal right-handed male subjects that

mirror the dramatic effects we found with the split brain subjects. However

these effects are so small that they would not be noteworthy in the absence of

the neuropsychological findings. Because the neuropsychological effects are

almost qualitative, these sorts of results have the potential of supplying

strong evidence for or against computational theories.

In addition, this sort of approach may well help untangle the convoluted

story of how abilities are (or are not) localized in the brain. For example,

we now need to administer image generation tasks that do or do not require

-' integration of parts using descriptions, and discover whether patients having

different sorts of lesions have selective difficulties with the different

tasks.

Evidence from intact brains: PET scannino

Drawing inferences from research on brain-damaged patients is slightly

suspect because the functions in a damaged brain could possible have become

organized in ways different from an intact one. Thus, it is useful to obtain

convergent measures using an entirely different methodology. The Cornell

Medical College and Harvard Psychology groups are just now planning PET

scanning studies. The logic here is as follows: To the extent that tasks share

* similar processing, there should be similar patterns of activation in the

brain. Further, if a theory claims that the same processing module is used in

two tasks, then we may find (but not necessarily) that the same region or
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regions are activated in both cases. If we do not find this, we must discover

how context shifts which parts of the brain are involved in which functions.

The initial studies we are conducting are very simple: For example, we will

ask subjects to listen to names of common objects, and to image the sound of

the object (e.g., a train), its visual appearance, or both at the same time.

14 our theory is correct, parts of visual cortex--but not auditory

cortex--should be activated when one forms a visual image but not an auditory

one, and vice versa when one forms an auditory image. (After they finish

imaging the words--and the PET scanning is over--we will test the subjects'

recognition memory for sounds and pictures, expecting to find better memory for

items imaged in the modality being tested; this will provide a check that

subjects actually behaved as asked.) In addition, we hypothesize that the two

systems will operate independently, even when one forms a multi-modal image

(which will cause activation of the regions activated when visual or auditory

images were formed in isolation). In later experiments we plan to ask subjects

to participate in various imagery tasks that putatively share greater or lesser

numbers of processing modules, and will examine the similarity and overlap of

activation during each task (for an example of how this logic can serve to

illuminate the nature of individual differences, see Kosslyn, Brunn, Cave &

Wallach, in press).

In this case, then, the theory serves to provide a framework for

interpreting very complex neuropsychological data. In addition, the techniques

of cognitive psychology allow us to design tasks to test the theory using these

sorts of data. The three approaches, from Al, cognitive psychology, and

neuropsychology, clearly complement each other.
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V1. Conclusions

In summary, the time seems ripe for a marriage of Al, cognitive

psychology, and neuropsychology. Each field has built up a considerable dowry,

but has also revealed limitations. The marriage seems likely to be mutually

beneficial. Whether a combined approach will indeed provide a major letap

forward is, of course, something only time will tell. But it would not be

surprising if the study of cognition were greatly enhanced by considering the

brain. Cognition is, after all, something the brain does.
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Footnote

The author wishes to thank Martha Farah, Lynn Robertson, and Eric Wanner for

valuable cwunents on an earlier draft of this paper.
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